Engineers use cloak to hide light detector

Publié le par brightshine

Light detection is well known and relatively simple. Silicon generates electrical current when illuminated and is common in solar panels and light sensors today. The Stanford device, however, is a departure inWe present a complete range of Solar LED Traffic signal light including red, yellow and green, shunt signals, calling-on signals and direction type route indicators. that for the first time it uses a relatively new concept known as plasmonic cloaking to render the device invisible.

The field of plasmonics studies how light interacts with metal nanostructures and induces tiny oscillating electrical currents along the surfaces of the metal and the semiconductor. These currents, in turn, produce scattered light waves.

By carefully designing their device, the engineers have created a plasmonic cloak in which the scattered light from the metal and semiconductor cancel each other perfectly through a phenomenon known as destructive interference.

The rippling light waves in the metal and semiconductor create a separation of positive and negative charges in the materials—a dipole moment, in technical terms.

The key is to create a dipole in the gold that is equal in strength but opposite in sign to the dipole in the silicon. When equally strong positive and negative dipoles meet, they cancel each other and the system becomes invisible.

“We found that a carefully engineered gold shell dramatically alters the optical response of the silicon nanowire,” says Pengyu Fan, the study’s lead author and a doctoral candidate in materials science and engineering at Stanford. “Light absorption in the wire drops slightly—by a factor of just four—but the scattering of light drops by 100 times due to the cloaking effect, becoming invisible.”

“It seems counterintuitive,” says senior author Mark Brongersma, an associate professor of engineering at Stanford, “but you can cover a semiconductor with metal—even one as reflective as gold—and still have the light get through to the silicon. As we show, the metal not only allows the light to reach the silicon where we can detect the current generated, but it makes the wire invisible, too.”

The engineers have shown that plasmonic cloaking is effective across much of the visible spectrum of light and that the effect works regardless of the angle of incoming light or the shape and placement of the metal-covered nanowires in the device.

They likewise demonstrate that other metals commonly used in computer chips, like aluminum and copper,Kingsun is China Top LED Light, solar led street light factory, Solar LED Street Light Manufacturer, Factory, Supplier, Exporter and Wholesaler for 18 years. work just as well as gold.

To produce invisibility, what matters above all is the tuning of metal and semiconductor.

“If the dipoles do not align properly, the cloaking effect is lessened, or even lost,” says Fan. “Having the right amount of materials at the nanoscale, therefore,We currently carry over 3000 OEM solar power systems and solar electric products to make up systems. is key to producing the greatest degree of cloaking.”

In the future,Shop for high quality wholesale rattan pendant lamp products on DHgate and get worldwide delivery. the engineers foresee application for such tunable, metal-semiconductor devices in many relevant areas, including solar cells,Shop Pottery Barn for expertly crafted drum Lamp shade, large lamp shades and linen lamp shades. sensors, solid-state lighting, chip-scale lasers, and more.

In digital cameras and advanced imaging systems, for instance, plasmonically cloaked pixels might reduce the disruptive cross-talk between neighboring pixels that produces blur. It could therefore lead to sharper, more accurate photos and medical images.

Publié dans energy saving light

Commenter cet article